
Scripting Guide
Version 1.8.1

Flying Logic

Software © 2020 Northrop Grumman Corp. and Arciem LLC
Your rights to the software are governed by the accompanying Software License
Agreement.

Documentation © 2020 Arciem LLC

This documentation is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License.

Python™ is a trademark of the Python Software Foundation.

Arciem LLC
FlyingLogic.com

Contents
Introduction 5
Scripting with Python 5
About Jython and Java 7
Writing Importers and Exporters 7
XSLT Importers and Exporters 8
Using Third-Party Python and Java Libraries 9
Scripting Console 10
Functionality Changes While Running a Script 11
Exception Handling 11
API Version 12

Online Resources 13
Python™ Language and Jython 13
Extensible Stylesheet Language Transformations (XSLT) 13
XML Schema Definition Language (XSD) 13
Other Standards 13

Pre-Defined Variables and Class Reference 15
Pre-Defined Variables 15
Classes Overview 15
Classes Detailed Reference 16

Document 16
Application 32
GraphElem 48
Edge 50
VertexElem 52
Entity 53
Junctor 56
Group 57
Domain 58
EntityClass 59
Symbol 61
Color 62
Date 64
Workweek 65
Resource 67
FontSpec 69
GraphOperator 71
TextEditor 72
VertexOperator 74
CalendarEvent 74
LayoutLine 74

4

Graphic Symbol Names 77

Importer and Exporter Examples 81
Example CSV Importer 81

CSV Format Description 81
Example CSV File 82
CSV Importer Code 83

Example DOT Exporter 89

Flying Logic Document Format 91
Reference Tables 92

5

Introduction
Flying Logic implements a powerful internal scripting language. Scripts
can be used to create or manipulate documents and change Flying Log-
ic’s application preferences. In addition, document importers and ex-
porters can be written as scripts, including document transformation
through Extensible Stylesheet Language Transformations (XSLT).

Scripting with Python

Flying Logic scripts are written in the Python™ programming language.
This guide does not provide an extensive tutorial on Python, but only
a quick overview for simple understanding of writing scripts. Online
sources for information on Python or the specific implementation Flying
Logic uses called Jython (Python for the Java Platform) can be founded
in "Online Resources" on page 13.

Python is an interpreted object-oriented program language. Small pro-
grams (called scripts) can be written and executed by Flying Logic via
the Run Script, Import Via Script and Export Via Script menu items.

Simple scripts can be written without a knowledge of object-oriented
programming, but complex scripts can benefit from such knowledge.
Most of the variables that Flying Logic provided to scripts are objects,
but can be manipulated fairly easily.

Here is a very simple script:

Application.alert("Hello, world!")

If you type the line above into a text file named “hello.py” and then se-
lect that file via the Run Script menu item, a dialog will appear with the
message “Hello, world!” The “.py” part of the file name is the standard
file extension for Python scripts.

Every Python script run via Flying Logic is provided a number of pre-
defined variables. One of those is the Application object, which provides
access to various features of the application that are not document-spe-
cific. The alert method of Application displays the string of text provided
as a parameter to the method.

A second variable provided to all scripts is the Document object. Here is
a simple example of using this object:

6

Application.alert(document.title)

Create a script with the above line. In Flying Logic create a new docu-
ment, open the Document Inspector and enter a value into the Title
field. Use the Run Script command to execute the new script. A dialog
should open with the “message” being the title you entered.

The document object gives you access to everything in the “current
document”; i.e., the document that was active when you ran the script.
The title instance variable of this document object gives access to the
title field of the Document Inspector.

Many variables in the document (and Application) object can be read
and written. If you run a script with the following line:

document.title = “A Simple Script Example”

you will find that the title field of the document has been changed.

Here is one more simple example that also demonstrates how to create
conditional expressions, loops and blocks in Python and shows how to
use the output console. Create a script with the following lines:

for ge in document.selection:
 if ge.isEntity:
 print ge.title
print "Done"

Python does not indicate the end of a statement with a semicolon or
other delimiter like many other languages. Instead a newline indicates
the end of a statement. The “print element.title” line is statement.

There are two looping statements in Python. The for loop executes a
block once for each element in a sequence. A block in Python is indicat-
ed by indentation. The lines if ge.isEntity: and print ge.title
are inside the for block, while print "Done" is not. The colon at the
end of the for statement indicates the start of a block.

The selection variable of document returns a sequence containing ob-
jects representing all the selected graph elements in the document. The
each loop of for block, the local variable ge is assigned one of the ele-
ments of selection.

The first line in the for block is a conditional if statement. If the condition
is true, the conditional block is executed. The line print ge.title is
inside the if statement’s block. (This also makes it a nested block.) If the

7

variable isEntity of the ge object is true, then the title of the ge object
(which must represent and entity in Flying Logic) will be printed.

You may be wondering where the print function prints text (or strings as
they are called in Python). By default strings are printed to Flying Logic’s
scripting console, which is a window that will open to display printed
strings. This console will also appear when an exception occurs in the
script and an error message is printed.

In summary, the above script prints the title of all selected entities to
the console and then the string “Done”.

The Application and document objects have many variables and meth-
ods that can be used to perform virtually every command in Flying Log-
ic. The document object is an instance of the Document class. A script
can retrieve objects representing other open documents other that the
“current document” or even open or create new documents via the Ap-
plication object. The Application object is a singleton— it is an instance
of the Application class, but there is only ever one instance of that class.

A complete class reference can be found in "Pre-Defined Variables and
Class Reference" on page 15.

About Jython and Java

Flying Logic uses the 2.7.0 version of Jython, which is compatible with
the 2.7 command-line version of Python; i.e., CPython. Scripts have ac-
cess to all features of a vanilla installation of Jython.

API 1.8 Scripts also have access to all Java packages that are distributed
with Java SE Release 8. Flying Logic 3.0.7 is the first release that em-
beds Java SE Release 8.

"Example CSV Importer" on page 81 has an example of directly ac-
cessing Java to implement dialogs for an importer.

Writing Importers and Exporters

Flying Logic document importers and exporters can be written in Py-
thon. The same pre-defined classes and variables exist for a regular
script, but there are special functions and variables that a script must

8

define to function as an importer or exporter.

An importer must define the function:

def importDocument(filename):
 """ code here """

This function is called to import the file with the given filename. If you
are importing into the current document, you can use the pre-defined
global variable document. To instead create a new document, call the
method newDocument() in the Application object.

An importer must also define a global variable with the identifier impor-
tItemLabel. This is used to determine the label for the menu item that
will be assigned to the importer script. For example:

importItemLabel = "Import Diagram from CSV File"

An exporter must define the function

def exportDocument(filename):
 """ code here """

and a global variable with the identifier exportLabelLabel.

exportItemLabel = "Export Diagram to CSV File"

For an exporter you will normally be working the existing document
object.

You can open, read and write files by using either the Python file func-
tions supported by Jython or the standard file classes in Java SE.

XSLT Importers and Exporters

Flying Logic’s Python interface can also be used to create importers and
exporters that perform their functionality via Extensible Stylesheet Lan-
guage Transformations (XSLT). XSLT is a language for transforming XML
documents into other XML documents. The transformation is encoded in
an XSLT input document, which is itself an XML document. These XSLT
input documents can either be separate files or embedded in a Python
script.

Since Flying Logic documents are in XML format, XSLT can be used to
transform other document formats to and from Flying Logic. Perform-

9

ing this transformation does require that a XSLT input document author
know the schema of the XML in a Flying Logic document. Instructions
for downloading the complete XML Schema Definition (XSD) for Flying
Logic documents can be found in "Flying Logic Document Format" on
page 91, followed by additional information on how to interpret the
schema.

Here is a short example of how to import a document using a string as
the XSLT document:

xslt_string = """ some XSLT document as embedded string """
def importDocument(filename):
 Application.importDocument(filename, \
(Application.XSLT_STRING, xslt_string))

Note: The \ character in Python code examples indicates line con-
tinuation, i.e., that the characters on the next line logically belong with
characters on the line where the line continuation symbol appears.

More detailed example of an importer and exporter can be found in "Im-
porter and Exporter Examples" on page 81.

Using Third-Party Python and Java Libraries

It is possible to access third-party Python and Java libraries from a script
using the standard import feature of Python. To facilitate this, the global
variable scriptParentDirectory is initialized with the path to the
script’s location in the filesystem. A script can then be bundled with ad-
ditional resources it requires, including libraries and other assets.

Use of a third-party Python library requires adding the path to the li-
brary to the Python import search path. This requires appending the
library’s directory to sys.path.

import sys
sys.path.append(scriptParentDirectory)
import some_python_package

Use of a third-party Java library requires calling the Application method

10

appendClassPath. The parameter to this method should be a list of ei-
ther directories containing Java class files or paths to jar files.

Application.appendClassPath([scriptParentDirectory + “/
SomeJavaLibrary.jar”])
import some_java_package

Note: Using third-party JDBC libraries to access databases requires
the use of one of two special methods found in the Application class:
createCompatibleDriver or createSQLConnection. See those methodfs
for examples of usage.

Scripting Console

The print function in Python outputs a string to standard output. A
Python program running in Flying Logic has its standard out redirected
to the Scripting Console window. This window will appear whenever the
print function is used.

 A multi-line text area shows every string printed. For example the text
area above shows the result of the statement

11

print "The author of current document:",\
document.author

assuming the author field in the Document inspector has been set to
“Sciral”.

The text persists between execution of different scripts. Select the
Clear Console button to erase the text. Select the Save Console but-
ton to save the text to a file.

If the Scripting Console is closed or hidden behind other windows, it can
be made to appear by selecting the Show Console menu item.

Functionality Changes While Running a Script

There are some changes to Flying Logic’s functionality while a script is
running.

• Layout of changes to a graph are deferred until the script com-
pletes.

• Auto-editing of new entity titles is disabled.

• All changes to a document are coalesced into one undo action (but
see the beginCoalesceUndo method of Document for how to control
this feature).

Exception Handling

Some scripting methods can return a Java exception instead of a Python
exception. To handle these Java exceptions, you can import the class
java.lang.Exception and then catch them.

from java.lang import Exception
assume you have variables referencing an edge and a group
try:
 document.modifyAttribute([anEdge], "parent", anGroup)
catch Exception, e:
 print e.message

Alternately, you can import other Java exception classes if you want to
handle exceptions caused by calling Java library code directly.

Uncaught exceptions will be printed to the Scripting Console. This in-

12

cludes uncaught Java exceptions, which prevents the Flying Logic’s nor-
mal exception report dialog from being displayed.

API Version

Features of the scripting API that appear in only particular versions or
later will have a notation like: API 1.8 .

13

Online Resources

Python™ Language and Jython

Python Programming Language – Official Website
http://www.python.org

The Jython Project
http://www.jython.org

Extensible Stylesheet Language Transformations
(XSLT)

XSLT Tutorial
http://www.w3schools.com/XSL/

XSL Transformations (XSLT) Version 2.0
http://www.w3.org/TR/2007/REC-xslt20-20070123/

XSLT at Wikipedia
http://en.wikipedia.org/wiki/XSLT

XML Schema Definition Language (XSD)

XML Schema Tutorial
http://www.w3schools.com/schema/

XML Schema (W3C) at Wikipedia
http://en.wikipedia.org/wiki/XML_Schema_(W3C)

Other Standards

HTML Color Names
http://www.w3schools.com/html/html_colornames.asp

14

15

Pre-Defined Variables and Class
Reference

Pre-Defined Variables
These variables are defined for each script and are the primary access
to Flying Logic documents and other features.

document
This represents the current document and is an instance of the
Document class.

Application
This is a singleton instance of the Application class. Methods and
variables that are not related to particular documents can be ac-
cessed through this object.

scriptParentDirectory
The path to the directory containing the script.

scriptMode
Has the value “importer”, “exporter” or “standard”. This allows
one script to act in any of the three modes; i.e., a script could
be written as an importer and exporter.

Classes Overview

Class Description
Document an instance of a Flying Logic document

Application the Flying Logic application

GraphElem the base class of all graph element types

Edge derived class of GraphElem for an edge

VertexElem derived from GraphElem, base class for entity, junctor and
group

Entity derived class from VertexElem for an entity

Junctor derived class from VertexElem for a junctor

Group derived class from VertexElem for a group

16

Domain a domain

EntityClass an entity class in a domain

Symbol a symbol

Color an immutable RGB color value

Date an immutable date

Resource a human, capital, or production resource

Workweek a workweek for a resource

GraphElemFilter base class for filters for creating a list of GraphElem

FontSpec a font specification

GraphOperator base class for user-defined graph operators

TextEditor class representing a modifiable text field

VertexOperator base class for system-defined operators

CalendarEvent an exception to the workweek

LayoutLine position information for one line of a title or annotation

Classes Detailed Reference

Document

The Document class represents a Flying Logic document. Every script
has a global variable document that in an instance of Document repre-
senting the current document.

title
the title of the document, a string

author
the author of the document, a string

comment
the comments of the document, a string

keywords
the keywords of the document, a string

edgeWeightsVisible
the edge weights visible setting, either True of False

17

confidenceVisible
the confidence visible setting, either True of False

annotationNumbersVisible
the annotation numbers visible setting, either True of False

edgeAnnotationsVisible
the edge annotations visible setting, either True of False

entityIDVisible
the entity ID visible setting, either True of False

addEntityAsSuccessor
the add entity as successor setting, either True of False

projectManagementVisible
the project management visible setting, either True of False

layoutIncrementally
the layout incrementally setting, either True of False

browseAnnotations
the browse annotations setting, either True of False

printShowSelectionHalo
the show selection halo when printing setting, either True of
False

canvasView
the current kind of canvas view, either graph (Application.
GRAPH_VIEW) or chart (Application.CHART_VIEW)

startDate
the start date of project as a Date instance when project man-
agement is enabled, otherwise None. This field is read-only if
using finish-to-start scheduling, with the following exception.
Setting this variables to None disables project management.

actualStartDate
the start date of the earliest task, which may be earlier than
project start date because of the task having a preferred start
or finish date. Read only

finishDate
the finish date of project as a Date instance when project man-
agement is enabled, otherwise None. The field is read-only if

18

using finish-to-start scheduling, with the following exception.
Setting this variable to None disables project management.

startTime
returns the number of hours into the work day that the project
begins

finishTime
returns the number of hours into the work day that the project
ends

standardCalendar
the standard calendar is the Workweek instance uses for all
tasks not assigned a resource when project management is en-
abled, otherwise None. Note that this variable always returns
a deep copy, not the current instance. Modifications will not be
saved unless you set the copy

For example:

stdCalendar = document.standardCalendar
stdCalendar.workdays = Workweek.MONDAY_MASK ^ theWeek.workdays
document.standardCalendar = stdCalendar

scheduleBasis
the direction of project scheduling, either Application.
SCHEDULE_FROM_START_DATE (the default) or Application.
SCHEDULE_FROM_END_DATE

workweek
This field is deprecated. Use standardCalendar instead.

calendars
a list of all defined calendars. These calendars, which are Work-
week instances, are copies. To make permanent changes call
the method updateCalendar. List can be empty (read only).

resources
a list of all defined resources. These resources are copies. To
make permanent changes call the method updateResource.
List can be empty (read only)

leftHeader
the left header text, a string

19

middleHeader
the middle header text, a string

rightHeader
the right header text, a string

leftFooter
the left footer text, a string

middleFooter
the middle footer text, a string

rightFooter
the right footer text, a string

orientation
the orientation of graph (see possible values under Application:
orientation types)

bias
the bias of graph (see possible values under Application: bias
types)

defaultEntityClass
the default entity class, usually Generic (read only instance of
EntityClass)

selectedEntityClass
the current entity class of newly-created entities when not ex-
plicitly specified, an instance of EntityClass

defaultJunctorOperator
the current operator of newly-created junctors, an instance of
VertexOperator

entityOperator
the current operator of newly-created entities, an instance of
VertexOperator

entityTitleWidth
the entity title width multiplier, a value between 1.0 and 8.0

entityTitleFont
the document-wide entity title font, an instance of a FontSpec.
This FontSpec can have a size of FontSpec.AUTOSIZE. Can be
assigned to None to restore the default setting

20

entityClassFont
the document-wide entity class name font, an instance of a
FontSpec. Can be assigned to None to restore the default setting

groupTitleFont
the document-wide group title font, an instance of a FontSpec.
Can be assigned to None to restore the default setting

defaultAnnotationFont
the document-wide default annotation font, an instance of a
FontSpec. Can be assigned to None to restore the default setting

documentPath
the path to the file from which the document was loaded, or
None if the document has never been saved (read only)

hoistedGroup
the currently hoisted group, a instance of Group, or None

hasSelection
True if any elements in the graph are selected, otherwise False
(read only)

selection
the current selection in the graph as a list of GraphElement in-
stances

all
the entire graph as a list of GraphElement instances

orderedVertices
returns all vertices as a list, earliest predecessor first, in acyclic
order; i.e., ignoring back edges

reverseOrderedVertices
returns all vertices as a list, latest successor first, in acyclic or-
der; i.e., ignoring back edges. The reverseOrderedVertices list
is not necessarily the reverse of the orderedVertices list because
of how groups and unconnected entities are handled

domains
a list of all the domains in the document (read only)

customSymbols
a list of all the custom Symbols in the document (read only)

21

pageSize
the currently calculated page size as a tuple of (width, height)
when printing, in points (read only)

exportPath
the directory that should be displayed in a file dialog involved
in an export operation for this document, defaults to the user’s
home directory

imageExportAttributes
a dictionary with the current image export attributes (see Dia-
gram Import Types in Application class)

chartFrame
the frame of the chart table as a tuple (x, y, width, height) (read
only)

chartCornerFrame
the frame of the “corner” of chart table where the headers re-
side as a tuple (x, y, width, height) (read only)

chartRowFrame
the frame of the row header of chart table as a tuple (x, y,
width, height) (read only)

chartColumnFrame
the frame of the columns of data in the chart table as a tuple (x,
y, width, height) (read only)

chartColumnLines
a tuple containing the x-position of all vertical lines in chart
table (read only)

chartHeaderTitles
a dictionary of the strings of the header labels (see Chart Part
Types in Application class) (read only)

chartHeaderRects
a dictionary of the frames of the header labels as tuples (x, y,
width, height) (see Chart Part Types in Application class) (read
only)

zoomFraction
the current zoom value for the canvas. Values greater than 1.0
indicate the canvas is zoomed-in, values less than 1.0 indicate

22

the canvas is zoomed-out

modifyAttribute(list, name, value)
modify a particular built-in attribute name (a string) to value
for every instance of GraphElem in list, throwing an exception
if any instance does not support the given name. The following
attributes can be set with this method:

weight
weightVisible
annotationVisible
operator
entityClass
symbol
color
confidence
completion
parent
collapsed
deepCollapsed*
startDate
finishDate
endDate**
effort
resource

The attributes title and annotation cannot be set via this method.

A bug existed that caused the selection to always be used for list when
modifying project management attributes. This was fixed in Flying Logic
2.2.6.

*This represents a pseudo-attribute that can deep collapse a group

**The attribute endDate is deprecated; use finishDate instead.

modifyUserAttribute(list, name, value)
modify a particular user defined attribute name to value for ev-
ery instance of GraphElem in list

hoistGroupFromSelection()
hoists the first group found in the current selection. If there are
more than one group in the selection, it is ambiguous which will
be hoisted

23

hoistGroupToParent()
if a group is hoisted, its parent group is hoisted instead, other-
wise does nothing

isSelected(elem)
returns True if the GraphElem elem is selected, otherwise False

selectAll()
selects every element in the graph

clearSelection()
deselects every element in the graph

addEntity()
adds a new entity to the graph with class selectedEntityClass. If
only one entity is currently selected, the new entity is connected
to that selected entity per the setting of addEntityAsSuccessor.
Returns a list of new elements, Entity instance first

addEntity(entityclass)
adds a new entity to the graph with class entityclass. If only one
entity is currently selected, the new entity is connected to that
selected entity per the setting of addEntityAsSuccessor. Returns
a list of new elements, Entity instance first

addEntityToTarget(vertexElem)
adds a new entity to the graph with class selectedEntityClass.
The newly created entity is connected to the given vertexElem
per the setting of addEntityAsSuccessor. If vertexElem is None,
does not connect the new entity to any element. Returns a list
of new elements, Entity instance first

addEntityToTarget(entityclass, vertexElem)
adds a new entity to the graph with class entityclass. The newly
created entity is connected to the given vertexElem per the set-
ting of addEntityAsSuccessor. If vertexElem is None, does not
connect the new entity to any element. Returns a list of new
elements, Entity instance first

insertEntity()
inserts a new entity to the graph with class selectedEntityClass,
but only if a single edge is selected, otherwise an exception is
thrown. Returns a list of new elements, Entity instance first

24

insertEntity(entityclass)
inserts a new entity to the graph with class entityclass, but only
if a single edge is selected, otherwise an exception is thrown.
Returns a list of new elements, Entity instance first

insertEntityOnEdge(edge)
inserts a new entity to the graph with class selectedEntityClass
on the given edge. Throws an exception if edge is None. Returns
a list of new elements, Entity instance first

insertEntityOnEdge(entityclass, edge)
inserts a new entity to the graph with class entityclass on the
given edge. Throws an exception if edge is None. Returns a list
of new elements, Entity instance first

getDomainByName(name)
return the Domain instance with the given name or None

getEntityClassByName(name_or_tuple)
return the EntityClass instance based on one of two matching
criteria: if name_or_tuple is a string, then the parameter is the
name of an entity class to find (preference is given to a custom
entity class if the are duplicate names); otherwise, if name_
or_tuple is a tuple, then the parameter must be the tuple (do-
main_name, entity_class_name) identifying an entity class (see
also the Domain class method getEntityClassByName)

Examples:

entityclass = document.getEntityClassByName(‘Goal’)
entityclass = document.getEntityClassByName(\ (‘Prerequisite
Tree, ‘Milestone’))

print()
prints a document after displaying the print preferences dialog

print(ask)
prints a document. Displays the print preferences dialog if ask
is True

focusCanvas()
changes the current keyboard focus to the graph canvas

cut()
performs a cut operation on the selected elements in the graph

25

copy()
performs a copy operation on the selected elements in the graph

paste()
pastes the graph elements from the last, still active, copy opera-
tion to the document

deleteSelection(recurse)
deletes the currently selected graph elements. If recurse is True,
also deletes nested elements in selected groups

newDomain(name)
returns a new Domain instance with the given name

deleteDomain(domain)
deletes the given domain, automatically changing the class of
any entity in the graph to defaultEntityClass if that entity’s class
was part of domain

deleteEntityClass (entityclass)
deletes the given entity class, automatically changing the class
of any entity in the graph to defaultEntityClass if that entity’s
class was entityclass. This is same operation as:

entityclass.getDomain().\ deleteEntityClass(entityclass)

newGroup()
creates a new group containing all currently selected elements
and returns a list of new elements, Group instance first

newGroup(children)
creates a new group containing all elements in children, which
must be a list, and returns a list of new elements, Group in-
stance first

newSymbol(path, rect)
creates a new symbol from the file at path clipped to the rect
tuple. If path is None, the user is asked to select a file. If path
or rect is None, the Image Viewer dialog is shown. The rect tuple
is (left, top, width, height)

newSymbolFromObject(obj, rect)
creates a new symbol from obj, where obj can either be an in-
stance of java.awt.Image, javax.swing.ImageIcon or a string of
a SVG XML document, clipped to the rect tuple. The rect tuple is

26

(left, top, width, height)

deleteSymbol(symbol)
deletes the symbol, fixing-up all entity classes and entities as
needed

isCustomSymbol(symbol)
returns True if symbol is custom (not built-in)

connect(fromElem, toElem)
connects an edge from the fromElem to the toElem, where the
elements must be an entity, junctor or edge. Returns a list of
new elements

reconnect(edge, part, element)
reconnects one end of edge to a new element, where part indi-
cates which end (see Edge Part Type in Application class). Re-
turns a list of new elements

saveDocument()
saves the document, asking the user to select a file only if the
document has never been saved

saveDocumentAs(path)
saves the document to the file at path, creating the file if neces-
sary. If path is None, the user is asked to select a file

saveDocumentAsTemplate(path)
saves the document as a template to the file at path, creating
the file if necessary. If path is None, the user is asked to select
a file

exportDocument(kind, path, params)
exports a document to a file of kind at path with settings in the
params dictionary. If path is None, the user is asked to select a
file. The kind is one of the Export Types in the Application class.
The keys and values in params are export kind dependent (see
Image Export, OPML Export, and XSLT Import/Export Types for
possible keys and values)

importDocument(kind, path, params)
imports a document from a file of kind at path with settings in
the params dictionary. If path is None, the user is asked to se-
lect a file. The kind is one of the Import Types in the Application
class. The keys and values in params are export kind dependent

27

(only XSLT import used params, XSLT Import/Export Types for
possible keys and values). Returns either a new Document in-
stance, if the import creates a new document, or this Document
if not

createResource()
creates and returns a new Resource instance with default val-
ues. If you change the values you must call updateResource

createResource(name, abbreviation, utilization, calendar)
creates and returns a new Resource instance with the given
values. The name and utilization parameters must not be None,
but abbreviation and calendar can. If a resource with name al-
ready exists, the value “Copy of” prepended to name is used.
For a default utilization supply the value 1.0. If calendar is None,
the standard calendar is assigned to the new resource

copyResource(resource)
returns a copy of the given resource with name changed by
prepending Copy of”

updateResource(resource)
updates a Resource instance. Changes to resource instance do
not take full effect until this method is called

removeResource(resource)
 removes the given resource from the document

resourceByName(name)
return the Resource instance with the given name or None if
these is no such resource

createCalendar()
creates and returns a new Workweek instance with default val-
ues. If you change the values you must call updateCalendar

createCalendar(name, workdays, workhours)
creates and returns a new Workweek instance with the given
values. The name parameter must not be None, If a calendar
with name already exists, the value “Copy of” prepended to
name is used. The workdays parameter must be an combina-
tion of day of week values and cannot be zero. The workhours
parameter must be between 1.0 and 23.0

28

copyCalendar(calendar)
returns a copy of the given calendar with name changed by
prepending Copy of”

updateCalendar(calendar)
updates a Workweek instance. Changes to calendar instance do
not take full effect until this method is called

removeCalendar(calendar)
removes the given calendar from the document

calendarByName(name)
return the Workweek instance with the given name or None if
these is no such calendar

resetStartTime()
resets the project start time to the start of the work day. Only
applies when finish-to-start scheduling is set

resetFinishTime()
resets the project finish time to the end of the work day. Only
applies when start-to-finish scheduling is set

closeDocument(ask)
closes the document, asking the user for permission is ask is
True and the document has been modified

find(match, options)
finds all graph elements that correspond to match with the giv-
en options (see Find Types in Application class)

selectSuccessors()
selects the successor of all current selected entities and junc-
tors, including any edge in-between

selectPredecessors()
selects the predecessor of all current selected entities and junc-
tors, including any edge in-between

selectEdgeHeadEntity()
selects the head entity of all current selected edges, including
any edge or junctor in-between

selectEdgeTailEntity()
selects the head entity of all current selected edges, including

29

any edge or junctor in-between

reverseSelectedEdges()
the head and tail elements of edge selected edge are swapped

swapSelectedElements()
if the two selected elements are of the same type, swaps them

swapSelectedForwardAndBackEdges()
swaps the selected forward and back edges

redactSelection()
redact the selected elements

redactAll()
redact all elements

importDomain(path)
imports the domain from the file at path

saveDomainsAsDefaults()
saves the current custom domains as the defaults for future new
documents

eraseProjectManagement()
erases all project management information from the document,
the same affect as:

document.startData = None

isSymbolInUse(symbol)
return True if a symbol is being used by an EntityClass or Entity

getSymbolByName(name)
returns the a Symbol instance matching the given name. Symbol
names are a generator name and an ID code separated by a co-
lon. For example, the blue pentagon symbol is “com.arciem.sym-
bol.FlowchartSymbolGenerator:pentagon”. If name is “inherit”
or “none”, the predefined special symbol values Application.
INHERIT_SYMBOL and Application.NO_SYMBOL,respectfully. A
table with the names of the builtin symbols can be found in
"Graphic Symbol Names" on page 77.

undo()
perform an undo operation if possible

30

redo()
perform a redo operation if possible

beginCoalesceUndo(name)
causes all changes to a document in a script to be coalesced into
one undo record under the given name. This is done internally
for each document accessed by a script, but can still be called to
change the undo record’s name. The method endCoalesceUndo
is called internally when the script terminates

endCoalesceUndo()
closes and appends the current undo record to the undo stack,
but only if there is anything to undo. A new undo record is
automatically started, but it’s name can be changed by calling
beginCoalesceUndo

operate(operator, flags)
operate on each element in a graph in acyclic order using opera-
tor, an instance of a class derived from GraphOperator, with the
types and order of elements determined by flags (see Operate
Types in Application class)

formatDate(date)
returns a string representing the given date as formatted for a
start or finish date

calcFont(spec)
calculates the ascent, descent and uppercaseHeight fields of the
given FontSpec spec derived from the document environment

getStringBounds(string, spec)
calculates the bounds of the given string rendered with the giv-
en FontSpec spec. Returns a tuple (x, y, width, height)

truncateWithEllipsis(string, spec, width)
if the given string rendered the given FontSpec spec does not
fit in width, returns the string truncated and an ellipsis added.
Return the original string is it would fit

findStaticFont(name)
returns a FontSpec for the given UI usage name, or None is no
such font

inHoist(elem)
returns True if the given GraphElem elem is in the current hoist;

31

i.e., the current hoisted group is an ancestor of elem. Other-
wise, returns False

32

Application

The Application class represents those features of Flying Logic that are
independent of any particular document. Such features include applica-
tion preferences, document loading and importing, version information,
etc. In addition the Application class contains constants used in method
calls in the Application class and others.

There is only one instance (singleton) of the Application class. This in-
stance can be accessed by the global variable Application.

There a number of types (orientation type, bias type, etc.) accessible
from the Application instance. These can be found listed after the vari-
ables and methods section of the class.

version
the version of Flying Logic as a string (read only)

apiVersion
the version of Flying Logic scripting API as a string (read only).
This string is “1.8” in Flying Logic Pro 3.0.7 API 1.8

edition
the edition of Flying Logic as a string, either “Pro” or “Reader”
(read only)

language
the user interface language of Flying Logic as a two-letter ISO
639 code possibly with a hyphen and country code appended to
the end (read only)

vertexOperators
a list of all available vertex operators (read only)

defaultOrientation
the default orientation of new documents preference value (see
possible values under orientation types)

defaultBias
the default bias of new documents preference value (see pos-
sible values under bias types)

animationSpeed
the animation speed preference value, between 0.0 and 1.0

33

adaptiveSpeed
the adaptive speed preference value, between 0.0 and 1.0

adaptiveAnimation
the adaptive animation state preference value, either True or
False

animationStyle
the animation style preference value (see possible values under
animation style types)

edgeColors
the edge colors preference value (see possible values under
edge colors types)

spinnerDisplay
the spinner display preference value (see possible values under
spinner display types)

undoLevels
the maximum number of undo levels to retain preference value,
an integer

autoBackupOnSave
the auto-backup on save preference value, either True or False

checkForUpdates
the check for updates preference value, either True or False

useProxyServer
the use proxy server preference value, either True or False

proxyServer
the proxy server preference value, either a domain name or an
IP address as a string

proxyPort
the port of the proxy server preference value, an integer

maxRecentDocuments
the maximum number of documents in Open Recent menu pref-
erence value, an integer

maxrecentScripts

34

the maximum number of scripts listed in the Run Script sub-
menu, as an integer

maxrecentImports
the maximum number of scripts listed in the Import Via Script
sub-menu, as an integer

maxrecentExports
the maximum number of scripts listed in the Run Export Via
Script sub-menu, as an integer

autoEditNewEntityTitles
the auto edit entity titles preference value, either True or False

canDisableControlAltShortcuts
the can disable ctrl-alt menu shortcuts preference value, either
True or False. Always returns False under Mac and Linux

importPath
the directory that should be displayed in a file dialog involved
in an import operation for the application, defaults to the user’s
home directory

lastAskDirectory
the directory the user chose during the last call to askForFile, a
string (read only)

entityFilter
an instance of GraphElemFilter that only matches entities (read
only)

junctorFilter
an instance of GraphElemFilter that only matches junctors (read
only)

groupFilter
an instance of GraphElemFilter that only matches groups (read
only)

edgeFilter
an instance of GraphElemFilter that only matches edges (read
only)

startFilter
an instance of GraphElemFilter that only matches entities with

35

no predecessors (read only)

endFilter
an instance of GraphElemFilter that only matches entities with
no successors (read only)

defaultDocumentPath
the default location for storing documents as a string (read only)

defaultWorkHours
the default work hours for a newly created Workweek instance
including the standard calendar when project management is
first enabled for a document

openDocumentOption
the preferences for whether new documents should be opened
in a window, tab, or the user always queried for the choice
(when possible).

newDocument()
returns a Document instance representing a newly created Fly-
ing logic document

openDocument(path)
returns a Document instance representing the Flying Logic
document opened from the given path. If the document is al-
ready opened, this method just returns the existing Document
instance

findDocument(path)
returns a Document instance representing the open Flying Logic
document opened from the given path, otherwise None is the
document is not open

importDocument(path, params)
returns a Document instance representing a Flying Logic docu-
ment created by importing the file with given path (or by asking
the user for a file if path is None) using an XSLT file to trans-
form the file into a Flying Logic document based on options in
the params dictionary (see possible options under XSLT Import/
Export Types)

showQuickCapture()
displays the Quick Capture dialog

36

exporterLabel(exportType)
returns the label for the export menu item matching the given
exportType

vertexOperatorByName(name)
returns the VertexOperator with the given user interface name;
i.e., “Fuzzy And”

filterGraphElemList(list, filter)
given a list of graph elements returns a new list that has been
filtered by the given GraphElemFilter filter

alert(message)
displays a simple alert dialog with a string message

askForString(message, defaultValue)
displays a simple dialog with message requesting the user enter
a value, which is returned as a string. If the user selects Cancel,
the defaultValue is returned instead. The value None is an ac-
ceptable defaultValue

askForInteger(message, defaultValue)
displays a simple dialog with message requesting the user enter
a value, which is returned as an integer. If the user selects Can-
cel, the defaultValue is returned instead

askForDouble(message, defaultValue)
displays a simple dialog with message requesting the user en-
ter a value, which is returned as a float (which is equivalent to
a Java double). If the user selects Cancel, the defaultValue is
returned instead

request(message, labels)
displays a request dialog titled “Request” to the user to answer
a question by making a selection among a set of buttons with
labels (a tuple). Returns an integer matching the index of the
label in the tuple. Note: the message can be a string or a Java
Component object, allowing for the creation of a more compli-
cated dialog

request(title, message, labels)
displays a request dialog with title to the user to answer a ques-
tion by making a selection among a set of buttons with labels (a
tuple). Returns an integer matching the index of the label in the

37

tuple. Note: the message can be a string or a Java Component
object, allowing for the creation of a more complicated dialog

askForFile(defaultDirectory, save)
displays a file dialog requesting the user select a file. The dialog
is a save file dialog if save is True, else it’s an open file dialog.
The dialog initially shows the files in defaultDirectory or the de-
fault user directory if None. Returns the path to the selected file
as a string or None if the user cancelled

appendClassPath(pathList)
appends the paths in pathList to the Java classpath for the
script. The values in the list should be either directories contain-
ing Java class files or paths to jar files, as strings

askForFile(save)
displays a file dialog just like the above method, but always ini-
tially shows the files in the default user directory

createCompatibleDriver(driver)
returns a “compatible” instance of java.sql.Driver that acts as a
shim class to another instance of java.sql.Driver created from a
JDBC library. This is a workaround for a “feature” of Java where
Driver instances can only be used if created by the application
ClassLoader, which is not true of scripts running in Flying Logic

You should have previously added the path to the
 MySQL JDBC jar via Application.appendClassPath
 method
from com.mysql.jdbc import Driver
from java.sql import DriverManager

Need to create shim Driver
shimDriver = Application.createCompatibleDriver(Driver())
DriverManager.registerDriver(shimDriver);
conn = DriverManager.getConnection("jdbc:mysql://someserver/
somedb", "someuser", "somepassword")

createSQLConnection(url, username, password,
driverClassName)

returns a Python SQL connection object. This method is a re-
placement for the the connect method in Jython’s zxJDBC pack-
age.

You should have previously added the path to the MySQL JDBC
jar via Application.appendClassPath method
url = "jdbc:mysql://someserver/somedb"

38

username = "someuser"
password = "somepassword"
driver = "com.mysql.jdbc.Driver"

obtain a connection using the with-statment
#with zxJDBC.connect(jdbc_url, username, password, driver) as
conn:
with Application.createSQLConnection(url, username, password,
driver) as conn:
 with conn:
 with conn.cursor() as c:
 # execute SQL commands

Orientation Types

ORIENTATION_LEFT_TO_RIGHT
ORIENTATION_RIGHT_TO_LEFT
ORIENTATION_TOP_TO_BOTTOM
ORIENTATION_BOTTOM_TO_TOP
ORIENTATION_INNER_TO_OUTER
ORIENTATION_OUTER_TO_INNER

Example:

Application.defaultOrientation = Application.ORIENTATION_LEFT_
TO_RIGHT

Bias Types

BIAS_START
BIAS_END

Example:

Application.defaultBias = Application.BIAS_START

Animation Style Types

ANIMATION_FIXED_FRAME_RATE
ANIMATION_FIXED_TIME

Example:

Application.animationStyle = Application.ANIMATION_FIXED_FRAME_
RATE

39

Edge Colors Types

EDGE_RED_GRAY_BLACK
EDGE_RED_YELLOW_BLACK
EDGE_RED_YELLOW_GREEN

Example:

Application.edgeColors = Application.\
EDGE_RED_GRAY_BLACK

Spinner Display Types

SPINNER_DISPLAY_NONE
SPINNER_DISPLAY_NUMERIC
SPINNER_DISPLAY_SYMBOL

Example:

Application.spinnerDisplay = Application.\
SPINNER_DISPLAY_SYMBOL

Export Types

EXPORT_DIAGRAM_PDF
EXPORT_DIAGRAM_JPEG
EXPORT_DIAGRAM_PNG
EXPORT_DIAGRAM_DOT
EXPORT_ANNOTATIONS_PDF
EXPORT_ANNOTATIONS_TEXT
EXPORT_OUTLINE_OPML
EXPORT_DIAGRAM_PROJECT_XML
EXPORT_DIAGRAM_PROJECT_MPX
EXPORT_DIAGRAM_XSLT

Example:

document.exportDocument(Application.EXPORT_DIAGRAM_PDF, None,
())

Import Types

IMPORT_DIAGRAM_CSV
IMPORT_DIAGRAM_XSLT

Example:

40

document.importDocument(IMPORT_DIAGRAM_CSV,None, ())

Image Export Types

IMAGE_EXPORT_WIDTH
IMAGE_EXPORT_HEIGHT
IMAGE_EXPORT_RESOLUTION
IMAGE_EXPORT_SHOW_SELECTION
IMAGE_EXPORT_SAVE_INK

These types are used as keys in a dictionary, the value being the
setting for the key. If a type appears in the dictionary, it over-
rides the current setting.

Example:

params = (Application.IMAGE_EXPORT_SHOW_SELECTION : False)
document.exportDocument(Application.EXPORT_DIAGRAM_JPEG, params)

Weekday Type

SUNDAY_MASK
MONDAY_MASK
TUESDAY_MASK
WEDNESDAY_MASK
THURSDAY_MASK
FRIDAY_MASK
SATURDAY_MASK
DEFAULT_WORKDAYS

These are the same constants found in the Workweek class and
duplicated here for convenience. See Workweek class for de-
tails.

41

OPML Export Types

OPML_EXPORT_FORWARD
OPML_EXPORT_UNICODE
OPML_EXPORT_INCLUDE_EQUATION

These types are used as keys in a dictionary, the value being the
setting for the key. If a type appears in the dictionary, it over-
rides the current setting.

Example:

params = (Application.EXPORT_OUTLINE_OPML: False)
document.exportDocument(Application.EXPORT_DIAGRAM_JPEG, params)

XSLT Import/Export Types

XSLT_ASK
XSLT_FILE
XSLT_STRING
XSLT_INCLUDE_FRAMES
XSLT_INCLUDE_EDGE_SPLINES

These types are used as keys in a dictionary, the value being the
setting for the key.

The first three values are mutually exclusive and indicate the
source of the XSLT file: either ask the user for locate the file
(value should be True), use the given file (the value is the path
to the file as a string), or use the already loaded/embedded
string (XLST file as a string).

The last two are only used when exporting, and indicate wheth-
er the Flying Logic document to be transformed should include
graph element frames and edge splines.

Example:

params = (
 Application.XSLT_ASK : True,
 Application.XSLT_INCLUDE_FRAMES : True
)
document.exportDocument(Application.EXPORT_DIAGRAM_XSLT, params)

Find Types

FIND_CASE_SENSITIVE

42

FIND_WHOLE_WORDS_ONLY
FIND_SEARCH_LABELS
FIND_SEARCH_ANNOTATIONS
FIND_SEARCH_UDA_NAMES
FIND_SEARCH_UDA_VALUES
FIND_SEARCH_RESOURCES
FIND_SELECT_COLLAPSED_GROUPS

These types are used as keys in a dictionary, the value being the
setting for the key. If a type appears in the dictionary, it over-
rides the current setting.

Example:

params = (Application.FIND_SEARCH_ANNOTATIONS:True)
document.find(‘communicate’, params)

Operate Types

OPERATE_ENTITY
OPERATE_JUNCTOR
OPERATE_EDGE
OPERATE_REVERSE
OPERATE_NON_EDGE
OPERATE_ALL

The first four types above are bit fields. The first three limit
which graph element types are operated upon, while OPERATE_
REVERSE indicated the elements should be iterated through end
to start. OPERATE_NON_EDGE is the same as OPERATE_ENTITY
| OPERATE_JUNCTOR, and OPERATE_ALL should be obvious.

Example:

mask = Application.OPERATE_ENTITY | Application.OPERATE_REVERSE
document.operate(myGraphOperator, mask)

Symbol Name Types

BITMAP_PREFIX
SVG_PREFIX
SYMBOL_SEPARATOR

BITMAP_PREFIX and SVG_PREFIX are the generator names for
bitmap images and SVG drawing custom symbols. SYMBOL_

43

SEPARATOR is the a colon.

See "Graphic Symbol Names" on page 77 for a list of the
built-in symbol name constants.

Special Symbol Types

INHERIT_SYMBOL
NO_SYMBOL

Special predefined Symbol instances. INHERIT_SYMBOL will
set an entity’s symbol back to the default for its entity class.
NO_SYMBOL will set an entity’s symbol to none, overriding any
possible default symbol for its entity class. For groups both IN-
HERIT_SYMBOL and NO_SYMBOL clear the group symbol.

Text Editor Types

BOLD
ITALIC
UNDERLINED
STRIKETHROUGH
LINK
FONT_SIZE
FONT_FAMILY
FONT_COLOR

These types are used as keys in a dictionary, the value being the
attribute for the key.

Example:

editor.changeSelectionAttributes((Application.BOLD: True))

Edge Part Types

EDGE_HEAD
EDGE_TAIL

Which end of an edge to reconnect.

Example:

document.reconnect(edge, Application.EDGE_TAIL, entity)

44

Shape Part Types

PART_WEIGHT
PART_ANNOTATION
PART_HOIST_CAP
PART_CONFIDENCE
PART_COMPLETION
PART_ENTITYID
PART_TITLE
PART_CLASS
PART_CLASS_BKGD
PART_START_DATE
PART_FINISH_DATE
PART_RESOURCES
PART_DISCLOSURE
PART_SYMBOL
PART_ANNOTATION_NUMBER
PART_ANNOTATION_TEXT
PART_COMPLETION_BAR
PART_EDGE_INFO

Parts of an element's shape.

Chart Part Types

PART_CHART_ROW
PART_CHART_INDEX
PART_CHART_ANNOTATION
PART_CHART_DISCLOSURE
PART_CHART_SYMBOL
PART_CHART_TITLE
PART_CHART_CLASS
PART_CHART_CLASS_COLOR
PART_CHART_CONFIDENCE
PART_CHART_ENTITYID
PART_CHART_START_DATE
PART_CHART_FINISH_DATE
PART_CHART_COMPLETION
PART_CHART_RESOURCES
PART_CHART_EFFORT

Parts of the chart table.

45

Other Font Types

AUTOSIZE

A special “font size” that means “set the size as the application
sees fit.”

Example:

document.titleFontSize = Application.AUTOSIZE

File Types

FILE_SEPARATOR
DOCUMENT_EXTENSION
TEMPLATE_EXTENSION
DOMAIN_EXTENSION

These are various file-lated constants: the system-dependent
file path separator, the Flying Logic document file extension, the
Flying Logic template file extension, and the Flying Logic domain
file extension.

Schedule Types

SCHEDULE_FROM_START_DATE
SCHEDULE_FROM_FINISH_DATE
SCHEDULE_FROM_END_DATE deprecated

Direction that project should be scheduled.

Open Document Option Types

OPEN_DOCUMENT_IN_WINDOW
OPEN_DOCUMENT_IN_TAB
OPEN_DOCUMENT_ASK

valid values for the openDocumentOption preference

Canvas View Types

GRAPH_VIEW
CHART_VIEW

46

Canvas view kinds.

Resource Assignment Types

RESOURCE_FIXED_EFFORT
RESOURCE_FIXED_DURATION
RESOURCE_FIXED_EFFORT_DURATION

If two or more resources are assigned to a task, this value de-
termines how those resources are applied. With RESOURCE_
FIXED_EFFORT the effort is considered total work hours to be
distributed between resources. With RESOURCE_FIXED_DURA-
TION, the effort acts as a fixed duration and resources all work
that number of hours on the task. Finally, RESOURCE_FIXED_
EFFORT_DURATION results in each resource only working part-
time on the task.

Edge Spline Types

PART_HEAD
PART_MIDDLE
PART_TAIL

Types that appear in a spline dictionary.

Diagram Import Types

DIAGRAM_IMPORT_NEW_DOCUMENT
DIAGRAM_IMPORT_PM_DOMAIN
DIAGRAM_INCLUDE_TOP_GROUP

These types are used as keys in a dictionary, the value being the
setting for the key. If a type appears in the dictionary, it over-
rides the current setting. All the current settings are booleans.

Static Font Types

FONT_SPINNER_LARGE
FONT_SPINNER_SMALL
FONT_SPINNER_UNDEFINED
FONT_ANNOTATION_ICON
FONT_ANNOTATION_NUMBER
FONT_DATE
FONT_DATE_BOLD
FONT_ROW

47

FONT_ROW_BOLD
FONT_CAP_ENTITY_ID
FONT_JUNCTOR_LARGE
FONT_JUNCTOR_SMALL
FONT_JUNCTOR_CHART
FONT_CHART_CALENDAR

Symbolic names of various fonts used to display shapes. Used in
Document’s findStaticFont method.

Symbol Scale and Size Types

GRAPH_SYMBOL_SCALE
CHART_SYMBOL_SCALE

Scale factors when calling generateSvg method of Symbol class.

CHART_SYMBOL_SIZE

Can be used as maxSize when calling generateSvg method of
Symbol class for chart-like output. Graph-like output should set
maxSize to None indicating an unconstrained size.

48

GraphElem

The GraphElem is the base class for all representations of graph ele-
ments: entities, junctors, groups and edges. This class has variables
and methods common to all elements.

eid
unique integer assigned to each GraphElem (read-only)

isEntity
returns False (see Entity, read only)

isJunctor
returns False (see Junctor, read only)

isGroup
returns False (see Group, read only)

isEdge
returns False (see Edge, read only)

canHaveParent
returns False, (see VertexElem, read only)

hasParent
returns True if has parent (read only)

frame
the element’s bounds as a tuple (left, top, width, height), or (0,
0, 0, 0) if the element is hidden in a collapsed group (read only)

annotation
the annotation (note) of the element, an HTML document as a
string, or None if the element has no note. If set to plain text,
the font of the annotation defaults to Monospaced/12

isHiddenInCollapse
returns True if the element is in a collapsed group, otherwise
False

hasAnnotation
returns True if the element has an annotation, otherwise False

annotationNumber
the annotation (note) number of the element, an integer, or
zero if the element has no note (read only)

49

displayAnnotationNumber
the annotation (note) number of the element if note numbers
are displayed as an integer, or zero if the element has no note
or note numbers are not displayed (read only)

partFrames
a dictionary of tuples (x, y, width, height). The keys are Shape
Part Types (see Application class) for visual elements that vary
by GraphElem type and state (read only)

plainAnnotation
the annotation (note) of the element as plain text, or None if the
element has no note (read only)

annotationEditor
returns a TextEditor instance which allows for modification of
the annotation, or None if the element has no note (variable is
read only, the TextEditor itself can be modified)

user
a dictionary containing user defined attributes (variable is read
only, the dictionary itself can be modified)

Examples:

previousFacility = elem.user['facility']
elem.user['facility'] = 'Los Angeles'
del elem.user['careless']

50

Edge

Edge is derived class of GraphElem and represents an edge in the graph.

isEdge
returns True (read only)

weight
the edge weight, a float value normally between -1.0 and 1.0

weightVisible
True if the edge weight is visible independently of the docu-
ment’s edgeWeightsVisible setting

annotationVisible
True if the edge annotation is visible independently of the docu-
ment’s edgeAnnotationsVisible setting

source
the source element of the edge; i.e., the element at the tail-end
of the edge (read only)

target
the target element of the edge; i.e., the element at the head-
end of the edge (read only)

isBackEdge
true if the edge is a back edge (read only)

splines
deprecated. Use spliesDictionary instead

splinesDictionary
the edge’s splines as a dictionary or None if the edge is hidden
in a collapsed group. The keys are the The dictionary values are
tuples of tuples of the spline control points (read only)

arrowheadVertices
the edge’s arrowhead as a tuple of three tuples (x, y) or None if
the edge is hidden in a collapsed group (read only)

color
the edge’s color in the canvas

noteLines
a list of LayoutLines providing position information for the an-

51

notation (read only)

isWeightVisible()
True if the edge weight is visible either because weightVisible
is True or the document’s edgeWeightsVisible setting is True,
otherwise False (read only)

isAnnotationVisible()
True if the edge annotation is visible either because annotation-
Visible is True or the document’s edgeAnnotationsVisible setting
is True, otherwise False (read only)

equals(object)
returns True if object represents the same edge as self

52

VertexElem

VertexElem is derived class of GraphElem and is a base class represent-
ing an entity, junctor and group.

canHaveParent
returns True (read only)

parent
the parent Group of the element or None if the element is at the
top of the hierarchy

hasInEdges
True if the element has any predecessors, implying it has at
least one in-edge. Ignores back edges during a call to the oper-
ate method of Document (read only)

hasOutEdges
True if the element has any successors, implying it has at least
one out-edge. Ignores back edges during a call to the operate
method of Document (read only)

inEdges
a list of the element’s in-edges. Does not include back edges
during a call to the operate method of Document (read only)

outEdges
a list of the element’s out-edges. Does not include back edges
during a call to the operate method of Document (read only)

index
the index of the element in chart view or zero if canvas not in
chart view (read only)

53

Entity

Entity is derived class of VertexElem and represents an entity.

isEntity
returns True (read only)

title
the title, as a string

confidence
the confidence, as a value between 0.0 and 1.0

canDrive
True if this entity can drive confidence; i.e., it has no predeces-
sors ignoring back edges (read only)

completion
the completion, as a value between 0.0 and 1.0. 0.0 if project
management not enabled

effortHours
the effort in hours, as a positive floating-point value or zero for
a milestone. Zero if project management not enabled.

effort
this field is deprecated — use effortHours instead. The effort
in days where one day is the document default work hours, as
a positive value or zero for a milestone. Zero if project manage-
ment not enabled

startDate
the start date, as a Date. None if project management not en-
abled

endDate
the end date, as a Date. None if project management not en-
abled

resources
a list of resources assigned to a task. The list can be empty
(read only)

resourceAssignment
the current setting for how resources are assigned to a task. See
Resource Assignment Type in Application class for more details

54

symbol
the directly set symbol for this entity, as a Symbol, otherwise
None

inheritedSymbol
the symbol for this entity, either the directly set Symbol or the
one inherited from its EntityClass. None if both values are None
(read only)

entityClass
the class, as an EntityClass

entityID
the element’s entity ID, as an integer. Can be zero if entityID are
not currently visible (read only)

equals(object)
returns True if object represents the same entity as self

addResource(resource)
assigns the given resource to the task

removeResource(resource)
removes the given resource assigned to the task

chartRowEffortString
the string that would be displayed for the entity’s effort in chart
view or None is project management not enabled (read only)

preferredStartDate
the preferred start date, as a Date. None if the entity has no
preferred start date or project management not enabled

preferredFinishDate
the preferred finish date, as a Date. None if the entity has no
preferred finish date or project management not enabled

preferredDateError
set to True if the entity exhibits a date error, otherwise False
(read only)

resourceString
the string that would be displayed for the entity’s resources in
graph view, or None if no resources assigned or project man-
agement not enabled (read only)

55

chartRowResourceString
the string that would be displayed for the entity’s resources in
chart view, or None if no resources assigned or project manage-
ment not enabled (read only)

startDateString
the string that would be displayed for the entity’s start date, or
None if project management not enabled (read only)

finishDateString
the string that would be displayed for the entity’s finish date, or
None if project management not enabled (read only)

titleFont
the FontSpec used to render the entity title (read only)

titleLines
a list of LayoutLines providing position information for the entity
title (read only)

56

Junctor

Junctor is derived class of VertexElem and represents a junctor.

isJunctor
returns True (read only)

operator
the operator, as a VertexOperator

57

Group

Group is derived class of VertexElem and represents a group.

isGroup
returns True (read only)

title
the title, as a string

color
the background color, as a Color

symbol
the symbol for this group, as a Symbol, otherwise None

collapsed
True if the group is collapsed

children
the elements contained in the group, as a list of VertexElem
(read only)

startDateString
the string that would be displayed for the group’s start date, or
None if project management not enabled (read only)

finishDateString
the string that would be displayed for the group’s finish date, or
None if project management not enabled (read only)

titleFont
the FontSpec used to render the group title (read only)

titleLines
a list of LayoutLines providing position information for the group
title (read only)

deepCollapse()
performs a deep collapse on the group

deepExpand()
performs a deep expand on the group

58

Domain

The Domain class represents a domain, a named collection of entity
classes, in a document.

name
the domain’s name, as a string

builtIn
True if the domain is built-in and cannot be modified (read only)

hidden
True if hidden

entityClasses
entity classes in the domain, as a list of EntityClass

getEntityClassByName(name)
returns the entity class in the domain with name, as an Entity-
Class. Returns None if there is no such class

newEntityClass()
creates and returns a new entity class in the domain, as an
EntityClass

deleteEntityClass(entityclass)
deletes the given entityclass from the domain

export(path)
exports the domain to a the file at path, asking the user to se-
lect a file if path in None

duplicate()
returns a duplicate of the domain with the name modified to
include “copy,” as a Domain

59

EntityClass

The EntityClass class represents an entity class.

name
the class name, as a string

builtIn
True if the domain is built-in and cannot be modified (read only)

color
the background color behind the class title, as a Color

weight
the default weight for new edges created along with entities of
this class, as a value between -1.0 and 1.0

symbol
the symbol inherited by new entities of this class, as a Symbol

milestone
a boolean value, true if entities derived from this class should be
a milestone (zero effort) task, otherwise false

resourceAssignment
the default resource assignment for entities derived from this
class should be a milestone (zero effort) task, otherwise false

effort
this field is deprecated and can return different values than Fly-
ing Logic 2. Milestones have a value of 0.0, otherwise 28800.0
(8 hours in seconds)

showName
a boolean value indicating if the class name should be shown,
defaults to True

domain
the parent domain of this class, as a Domain (read only)

nameColor
the color that the name of the entity class would be rendered in
an entity (read only)

duplicate()
creates and returns a unique duplicate of this class with the

60

name modified to include “copy,” as an EntityClass

61

Symbol

The Symbol class represents a symbol. Symbol instances are immu-
table.

symbolID
the unique ID for this symbol, as a string (read only)

identifier
a string suitable as a parameter to the Document method get-
SymbolByName (read only)

equals(object)
returns True if object represents the same symbol as self

generateSvg(document, x, y, scale, maxSize)
generate an SVG fragment that renders the symbol at the
given position with given scale factor (see Symbol Scale and
Size Types in Application class) and maxSize, a tuple of (width,
height) and can be None

62

Color

The Color class represents an RGB color value. Color instances are im-
mutable. The constructors are accessible from scripts.

r
the red component, as a value between 0.0 and 1.0 (read only)

g
the green component, as a value between 0.0 and 1.0 (read
only)

b
the blue component, as a value between 0.0 and 1.0 (read only)

a
the alpha component, as a value between 0.0 and 1.0 (read
only)

init(r, g, b)
constructs a new Color instance with the given red, green and
blue values (in the range 0.0 to 1.0) and an alpha of 1.0

init(r, g, b, a)
constructs a new Color instance with the given red, green, blue
and alpha values (in the range 0.0 to 1.0)

init(name)
constructs a new Color instance derived from standard HTML
color hex value or color name; e.g., “#FF0000”, “white”, “black”,
“orange”, etc. (see "Online Resources" on page 13 for a link
to a complete list.)

equals(object)
returns True if object represents the same color as self within a
set tolerance

Pre-defined colors

These are class variables of Color. The red, green and blue com-
ponents are given after each variable name. Note that some are
not a match for the HTML color name equivalent; e.g., ORANGE
is the not the same color as HTML “orange”

BLACK 0.00, 0.00, 0.00
WHITE 1.00, 1.00, 1.00

63

RED 1.00, 0.00, 0.00
ORANGE 1.00, 0.50, 0.00
YELLOW 1.00, 1.00, 1.00
GREEN 0.00, 1.00, 0.00
BLUE 0.00, 0.00, 1.00
VIOLET 1.00, 0.00, 0.50
CYAN 0.00, 1.00, 1.00
MAGENTA 1.00, 0.00, 1.00
GRAY 0.50, 0.50, 0.50
LIGHT_GRAY 0.75, 0.75, 0.75
DARK_GRAY 0.25, 0.25, 0.25

64

Date

The Date class represents a day of the year. Date instances are immu-
table. The constructors are accessible from scripts.

day
the day, an integer from 1 to 31 (read only)

month
the month, an integer from 0 to 11 (read only)

year
the year, an integer (read only)

weekday
the day of the week, an integer from 0 to 6 (read only)

init()
constructs a new Date instance for the current date

init(year, month, day)
constructs a new Date instance for the given year, month and
day

equals(object)
returns True if object represents the same date as self

compareTo(date)
returns 0 if the date represented by the argument is equal to
the date represented by this Date, less than 0 if the date of
this Date is before the date represented by the argument,and
greater than 0 if the date of this Calendar is after the date rep-
resented by the argument

addDays(days)
returns a new Date instance representing a date with the given
number of days added to the date represented by this Date. The
argument days can be negative

addDays(workdays, workweek)
returns a new Date instance representing a date with the given
number of workdays added to the date represented by this Date
and properly considering the Workweek represented by the pa-
rameter workweek. The argument workdays can be negative.

65

daysFromSunday
the day of the week as a difference from Sunday: 0 for Sunday,
1 for Monday, etc. (read only)

Workweek

The Workweek class represents the information about what the work
schedule for project management calculations. The constructors are not
accessible from scripts.

workdays
the days of the week that are work days, as a bit field (see
Workday Type below)

events
the exceptions to the work schedule, as a list of CalendarEvent
(read only)

init(workdays)
creates a new Workweek with the given workdays with no work
schedule exceptions

init(workweek)
creates a new Workweek which is a deep copy of given Work-
week instance

checkWorkDay(day)
returns True if the given day is a regular work day for this Work-
week, where day is one of the Workday values below

checkWorkDay(date)
returns True if the given date (a Date instance) would be a work
day for this Workweek with exceptions considered

addExceptionForDate(date)
adds an exception to the work schedule for given date

removeExceptionForDate(date)
removes an exception to the work schedule for given date

calendarId
an internal integer value assigned to each calendar, unique in
each document. The standard calendar is alway has a value of
1 (read only)

66

Workday Type

MONDAY_MASK
TUESDAY_MASK
WEDNESDAY_MASK
THURSDAY_MASK
FRIDAY_MASK
SATURDAY_MASK
SUNDAY_MASK
DEFAULT_WORKDAYS

Bit values for days of the week. DEFAULT_WORKDAYS is the same
as the masks for Monday through Friday, OR'd together.

67

Resource

The Resource class represents the information about a human, capital
or production resource that can be assigned to a task. The constructors
are not accessible from scripts.

resourceId
an internal integer value assigned to each resource, unique in
each document (read only)

name
the full name of the resource

abbreviation
an abbreviation for the resource used to reduce display size

utilization
a floating point value indication the amount of time the resource
is used on the resource. For example a value of 0.5 for a re-
source with an 8 hour work day only works 4 hours per day on
the project. Defaults to 1.0

calendar
the calendar being used by this resource. Defaults to the stan-
dard calendar

68

GraphElemFilter

GraphElemFilter is a base class for any class used to filter graph el-
ements (instances of GraphElem). The Application class provides six
pre-defined instances to filter for entities, junctors, groups, edges, start
entities and end entities. Script writers can also create classes derived
from GraphElemFilter to perform arbitrary filtering.

filter(elem)
returns True if the elem matches the filter. Derived classes should
override this method. Reminder: Your derived class needs to in-
clude self as the first parameter, with elem as the second

69

FontSpec

The FontSpec class represents a specification for a font. The constructor
is accessible from scripts.

family
the font family; e.g., Arial, New Times Roman, SansSerif, etc.
(read only)

style
the derived style of the font, plain, bold, italic or bold/italic.
Note that fonts like Arial Bold that have an inherent style have
this field set to plain (read only)

size
the point size of the font. Can be set to AUTOSIZE when the
entityTitleFont field of the Document is involved (read only)

PLAIN
constant value indicating a style of plain (read only)

BOLD
constant value indicating a style of bold. This can be or’ed with
ITALIC (read only)

ITALIC
constant value indicating a style of italic. This can be or’ed with
BOLD (read only)

AUTOSIZE
constant value indicating the size should be determined algo-
rithmically. Only used for the entityTitleFont field of Document
(read only)

ascent
the ascent of the font. If you construct a FontSpec at runtime,
you must call the calcFont method in a Document instance to
make this field valid (read only)

descent
the descent of the font. If you construct a FontSpec at runtime,
you must call the calcFont method in a Document instance to
make this field valid (read only)

70

uppercaseHeight
the maximum ascent of the letters ‘X’, ‘O,’ and ‘M’ of the font. If
you construct a FontSpec at runtime, you must call the calcFont
method in a Document instance to make this field valid (read
only)

init(family, style, size)
creates a new FontSpec with the given family, style and size

71

GraphOperator

Any object passed to the operate method of Document must be an in-
stance of a class derived from the GraphOperator class.

operate(elem)
called for each graph element the flags parameter of the Docu-
ment’s operate method. Derived classes should override this
method. Reminder: Your derived class needs to include self as
the first parameter, with elem as the second.

72

TextEditor

Annotations can be edited via a TextEditor instance instead of having
to modify the annotation as a string value, which can be difficult as an
annotation is in HTML format. A TextEditor for an annotation is provided
via the GraphElem method annotationEditor.

length
length of the “plain” text, as an integer (read only)

text
the styled text as an HTML document in a string (read only)

plainText
the plain text; i.e., the same as text above but with all HTML
tags removed (read only)

selection
the currently selected text as plain text (read only)

selectionStart
the start of the selection, as an integer

selectionEnd
the end of the selection, as an integer, always greater than se-
lectionStart

selectionAttributes
the attributes of the text at selectionStart, as a dictionary of
Text Editor Type, see Application class for possible keys and
values (read only)

flush()
saves all changes to the text, possibly creating an undo record

replace(string, attributes)
replaces the text between selectionStart and selectionEnd with
string, assigning the given attributes dictionary to the new text,
and sets selectionEnd to selectionStart plus the length of string
(see the Text Editor Type in Application class for possible attri-
butes keys and values)

insert(string, attributes)
inserts string at selectionStart, assigning the given attributes
dictionary to the new text, and sets selectionEnd to selection-

73

Start plus the length of string (see the Text Editor Type in Ap-
plication class for possible attributes keys and values)

remove()
deletes the text between selectionStart and selectionEnd and
sets selectionEnd to selectionStart

runStart()
searching backwards, finds the first character not matching the
attributes at selectionStart starting at selectionStart and returns
the index of the next character (as an integer) or zero if the
start of the text is reached

runStart(attributes)
searching backwards, finds the first character not matching the
given attributes starting at selectionStart and returns the index
of the next character (as an integer) or zero if the start of the
text is reached

runLimit()
searching forward, finds the first character not matching the at-
tributes at selectionStart starting at selectionStart, and returns
the index of that character minus the result of calling runStart(
), as an integer

runStart(attributes)
searching backwards, finds the first character not matching the
given attributes starting at selectionStart, and returns the in-
dex of that character minus the result of calling runStart(at-
tributes), as an integer

runOfSame()
returns the number of characters with the same attributes be-
ginning at start of string

runOfSame(start)
returns the number of characters with the same attributes be-
ginning at start

reset(string)
replaces all the text in the editor with string, which must be an
HTML document

74

VertexOperator

A VertexOperator is the base class for system operators like Fuzzy And,
Fuzzy Or, etc. Instances of VertexOperator are immutable.

name
user interface long name of the operator; e.g., “Fuzzy And”
(read only)

abbreviation
user interface short name of the operator; e.g., “AND” (read
only)

asciiAbbreviation
user interface ASCII-compliant short name of the operator; e.g.,
“AND” (read only)

color
the fill color (read only)

CalendarEvent

A Calendar event stores a work schedule exception. Instances of Calen-
darEvent are immutable.

startDate
the date of the exception, as a Date (read only)

LayoutLine

Contains position information about one line of text in a title or annota-
tion. This can be used to extract the actual text from a string or render-
ing attributes from a TextEditor instance.

start
the index of the first character in this line (read only)

count
the number of characters in this line (read only)

position
the baseline position of the first character in the line as a tuple
(x, y) (read only)

bounds
the frame of the characters in this line as a tuple (x, y, width,

75

height) (read only)

76

77

Graphic Symbol Names
The getSymbolByName method in the Document class can be used to
create an instance of the Symbol class that can be assigned to the
symbol field of an entity, group or custom entity class. The format of
these names is generator:id; i.e., a generator name and a symbol ID
separated by a colon.

For custom symbols generator is either “com.arciem.symbol.SVGSym-
bolGenerator” for SVG drawings and “com.arciem.symbol.BitmapSym-
bolGenerator” for bitmap images; e.g., PNG, JPEG, GIF, etc. The id will
be a UUID as a string.

The Application object has predefined constants for all the symbols
built-in to Flying Logic Pro. One of these constants can be supplied as a
parameter to the getSymbolByName method of a Document instance.

Symbol Name Constant Image

FLOWCHART_RECTANGLE

FLOWCHART_RECTANGLE_LINED

FLOWCHART_RECTANGLE_ROUND

FLOWCHART_CIRCLE

FLOWCHART_CIRCLE_DOUBLE

FLOWCHART_LOZENGE

FLOWCHART_HEXAGON

FLOWCHART_OVAL

FLOWCHART_PARALLELOGRAM

78

FLOWCHART_TRAPEZOID_DO

FLOWCHART_SQUARE

FLOWCHART_SQUARE_LINED

FLOWCHART_CRYSTAL

FLOWCHART_PENTAGON

FLOWCHART_OCTAGON

FLOWCHART_TRIANGLE_UP

FLOWCHART_TRIANGLE_DOWN

FLOWCHART_DISPLAY

FLOWCHART_DOCUMENT

FLOWCHART_RECTANGLE_BOW_LEFT

FLOWCHART_RECTANGLE_BOW_OUT

FLOWCHART_SLANT

FLOWCHART_SQUARE_CIRCLE

FLOWCHART_CYLINDER

FLOWCHART_CARD

79

FLOWCHART_TAPE

FLOWCHART_STRIP

FLOWCHART_CONNECTOR_OFF_PAGE

FLOWCHART_CONNECTOR_ON_PAGE

WRITING_BALLOON_TALK

WRITING_BALLOON_THINK

WRITING_BALLOON_SHOUT

WRITING_BALLOON_DIALOG

DINGBAT_QUESTION_MARK

DINGBAT_CHECK_MARK

DINGBAT_BALLOT_X

DINGBAT_ASTERISK

DINGBAT_ARROW_RIGHT

DINGBAT_STAR

DINGBAT_HAND_RIGHT

DINGBAT_HEART

80

DINGBAT_LIGHTNING

DINGBAT_INTL_NO

81

Importer and Exporter Examples

Example CSV Importer

CSV Format Description

The Python-based CSV (comma-separated values) importer described
here is exactly the same as the one built into Flying Logic.

When using the File ➧ Import ➧ Import Diagram from CSV... com-
mand, you will first be asked for a text file to import, then you will be
presented with two dialogs: The first dialog provides the importer with
information on how to read the file (text encoding, whether comma or
tab is used as a column delimiter and whether there is a header row)
and whether a new document is to be created (instead of importing into
the current document).

The second dialog tells the importer how to interpret the columns in the
text file. The columns in the text file can either be used as the name
of a new entity or group, the entity class of a new entity (ignored from
groups), a list of connections to this entity by column number (ignored
for groups), a list of children (ignored for entities), or an annotation. A
row is considered to represent a group if children is not an empty string
of text. The connections can be considered wither a list of predecessors
or successors. The valued entered in Internal Separator is the charac-
ter used to separate column numbers in a connection or children list
(defaults to space). The row indexes for predecessors, successors, or
children can either start at 1 for the first row, 0 for the first row, or be
assigned an index from a value taken from a column.

The entires in a column can be quoted with double quotes. When quot-
ed, appearance of a double quote character in the column text must be
escaped with a backslash character.

82

Example CSV File

Line # Line Text

1 "Title","Class","Depends","Group"

2 "D","Action",,

3 "E","Action",,

4 "C","Intermediate Effect","2 3",

5 "B","Action",,

6 "A","Goal","4 5",

7 "G",,,"2 3 4"

The example above has a header row, comma as separator, uses quoted
strings (unnecessary in this case as there are no embedded commas,
etc.), and the default list separator of space. Note that the header row
is still considered a row, so the "D" entity is row 2.

The example file generates the following diagram:

83

CSV Importer Code
import_csv.py
import comma separated values from a file into Flying Logic
supports comma, tab and semicolon as delimiters and quoted values
creates entities, groups and edges, but not junctors
Copyright 2013,2014 Sciral

Java classes needed to create the UI and read files
from java.io import InputStreamReader, BufferedReader, FileInputStream
from java.nio.charset import Charset
from javax.swing import Box, BoxLayout, JLabel, JCheckBox, JComboBox,
JTextField

required variable that provides the label for the item in Flying Logic
import menu
importMenuLabel = "Import Diagram from CSV File"

importLine: a subroutine to process a line
returns an array of values found in the line
def importLine(line, delimiter):
 cols = []
 stage = 0
 quoted = False
 for c in line:
 if stage == 0:
 if c == '"':
 quoted = True
 stage = 1
 s = []
 elif c == delimiter:
 cols.append('')
 elif not c.isspace():
 quoted = False
 stage = 1
 s = [c]
 elif stage == 1:
 if c == '"':
 if quoted:
 stage = 2
 else:
 s.append(c)
 elif c == delimiter:
 if quoted:
 s.append(c)
 else:
 cols.append(''.join(s).strip())
 stage = 0
 else:
 s.append(c)
 elif stage == 2:
 if c == '"':
 s.append(c)
 stage = 1

84

 elif c == delimiter:
 cols.append(''.join(s))
 stage = 0
 elif not c.isspace():
 """ bad format """
 break

if stage != 0:
 cols.append(''.join(s))

 return cols

this function nicely adds an annotation from plain text
def setAnnotation(elem, text):
 editor = elem.annotationEditor
 editor.insert(text, { })
 editor.flush()

importDocument: required function for an importer
parameters
file: filename of the file to import
def importDocument(file):
 # create a dialog using Java to collect details about the imported file
 masterBox = Box(BoxLayout.Y_AXIS)

 # text encoding
 controlBox = Box(BoxLayout.X_AXIS)
 controlBox.add(JLabel("Text Encoding: "))
 encodingsComboBox = JComboBox(['Windows/Latin-1/ISO-8859-1', 'UTF-8',
'ASCII (US)'])
 controlBox.add(encodingsComboBox)
 masterBox.add(controlBox)

 # delimiter
 controlBox = Box(BoxLayout.X_AXIS)
 controlBox.add(JLabel("Column separator: "))
 columnSepComboBox = JComboBox(["Commas", "Tabs", "Semicolon"])
 controlBox.add(columnSepComboBox)
 masterBox.add(controlBox)

 # header row?
 controlBox = Box(BoxLayout.X_AXIS)
 headerCheckbox = JCheckBox("Has header row")
 controlBox.add(headerCheckbox)
 controlBox.add(Box.createHorizontalGlue())
 masterBox.add(controlBox)

 # create new document? (default is to import into current document)
 controlBox = Box(BoxLayout.X_AXIS)
 newDocCheckbox = JCheckBox("Create new document")
 controlBox.add(newDocCheckbox)
 controlBox.add(Box.createHorizontalGlue())
 masterBox.add(controlBox)

85

 # display dialog and collect options
 if 0 == Application.request("CSV Import Settings", masterBox, ("Cancel",
"OK")):
 return

 createNewDocument = newDocCheckbox.isSelected()

knownEncodings = ['ISO-8859-1', 'UTF-8', 'US-ACSII']
 encoding = knownEncodings[encodingsComboBox.selectedIndex]

 columnDelimiter = ','
 if columnSepComboBox.selectedIndex == 1:
 columnDelimiter = '\t'
if columnSepComboBox.selectedIndex == 2:
 columnDelimiter = ';'

 hasHeader = headerCheckbox.isSelected()

 theDoc = document
 if createNewDocument:
 theDoc = Application.newDocument()

 # open input file
 reader = BufferedReader(InputStreamReader(FileInputStream(file),
encoding))

firstLine = True
 vertexList = []
 indexMap = {}
 row = 0

 # process file line by line
 while True:
 line = reader.readLine()
 if line == None:
 break

 row = row + 1

 # collect values in line
 columns = importLine(line, columnDelimiter)
 numColumns = len(columns)

 # if first line, ask user to identify meaning if each column
 if firstLine:
 firstLine = False

 columnNames = ['Not used']
 indexNames = ['First row is index 1', 'First row is index 0']
 if hasHeader:
 columnNames = columnNames + columns
 indexNames = indexNames + columns
 else:
 for i in range(numColumns):

86

 columnNames.append('Column ' + str(i + 1))
 indexNames.append('Column ' + str(i + 1))

 # make Java dialog
 masterBox = Box(BoxLayout.Y_AXIS)

 controlBox = Box(BoxLayout.X_AXIS)
 controlBox.add(JLabel("Please match attributes with columns:"))
 controlBox.add(Box.createHorizontalGlue())
 masterBox.add(controlBox)

 masterBox.add(Box.createVerticalStrut(20))

 controlBox = Box(BoxLayout.X_AXIS)
 controlBox.add(JLabel("Element Title: "))
 titleColumnComboBox = JComboBox(columnNames)
 controlBox.add(titleColumnComboBox)
 controlBox.add(Box.createHorizontalGlue())
 masterBox.add(controlBox)

 controlBox = Box(BoxLayout.X_AXIS)
 controlBox.add(JLabel("Entity Class: "))
 classColumnComboBox = JComboBox(columnNames)
 controlBox.add(classColumnComboBox)
 controlBox.add(Box.createHorizontalGlue())
 masterBox.add(controlBox)

 controlBox = Box(BoxLayout.X_AXIS)
 controlBox.add(JLabel("Connections: "))
 linkColumnComboBox = JComboBox(columnNames)
 controlBox.add(linkColumnComboBox)
 predColumnComboBox = JComboBox(['Predecessors', 'Successors'])
 controlBox.add(predColumnComboBox)
 controlBox.add(Box.createHorizontalGlue())
 masterBox.add(controlBox)

 controlBox = Box(BoxLayout.X_AXIS)
 controlBox.add(JLabel("Children: "))
 childColumnComboBox = JComboBox(columnNames)
 controlBox.add(childColumnComboBox)
 controlBox.add(Box.createHorizontalGlue())
 masterBox.add(controlBox)

 controlBox = Box(BoxLayout.X_AXIS)
 controlBox.add(JLabel("Internal separator: "))
 rowSepTextField = JTextField(5)
 controlBox.add(rowSepTextField)
 controlBox.add(Box.createHorizontalGlue())
 masterBox.add(controlBox)

 controlBox = Box(BoxLayout.X_AXIS)
 controlBox.add(JLabel("Row Index: ")),
 indexColumnComboBox = JComboBox(indexNames)
 controlBox.add(indexColumnComboBox)

87

 controlBox.add(Box.createHorizontalGlue())
 masterBox.add(controlBox)

 controlBox = Box(BoxLayout.X_AXIS)
 controlBox.add(JLabel("Annotation: "))
 noteColumnComboBox = JComboBox(columnNames)
 controlBox.add(noteColumnComboBox)
 controlBox.add(Box.createHorizontalGlue())
 masterBox.add(controlBox)

 if 0 == Application.request("CSV Column Interpretation",
masterBox, ("Cancel", "OK")):
 if createNewDocument:
 theDoc.closeDocument(False)
 return

 titleColumn = titleColumnComboBox.selectedIndex - 1

 classColumn = classColumnComboBox.selectedIndex - 1

 linkColumn = linkColumnComboBox.selectedIndex - 1

 childrenColumn = childColumnComboBox.selectedIndex - 1

 isSuccessor = (predColumnComboBox.selectedIndex == 1)

 indexColumn = indexColumnComboBox.selectedIndex - 2

 noteColumn = noteColumnComboBox.selectedIndex - 1

 rowDelimiter = rowSepTextField.text.strip()
 if len(rowDelimiter) == 0:
 rowDelimiter = ' '

 # if first line is a header, skip line
 if hasHeader:
 continue

 # default entity and group attributes
 entityTitle = 'untitled'
 entityClass = 'Generic'
 entityLinks = ''
 groupChildren = ''
 annotation = None

 # match values with identified attributes
 if titleColumn >= 0 and titleColumn < numColumns:
 entityTitle = columns[titleColumn]
if classColumn >= 0 and classColumn < numColumns:
 entityClass = columns[classColumn]
 if linkColumn >= 0 and linkColumn < numColumns:
 entityLinks = columns[linkColumn]
 if childrenColumn >= 0 and childrenColumn < numColumns:
 groupChildren = columns[childrenColumn]

88

 if noteColumn >= 0 and noteColumn < numColumns:
 annotation = columns[noteColumn]
 if len(annotation) == 0:
 annotation = None

create index mapping based on user choice of one-based, zero-based or by
column value
indexRow = row
 if indexColumn >= 0:
 indexRow = int(columns[indexColumn])
 elif indexColumn == -1:
 indexRow = row - 1
 indexMap[indexRow] = row

 # either handle as group or entity -- no junctors yet
 if groupChildren != '':
 group = theDoc.newGroup(None)[0]
 if entityTitle != 'untitled':
 group.title = entityTitle
 if annotation != None:
 setAnnotation(group, annotation)

 vertexList.append((group, None, groupChildren))
 else:
 entity = theDoc.addEntityToTarget(None)[0] # no need to
clearSelection each iteration
 entity.title = entityTitle

 eCls = theDoc.getEntityClassByName(entityClass)
 if eCls != None:
 entity.entityClass = eCls
 if annotation != None:
 setAnnotation(entity, annotation)

 vertexList.append((entity, entityLinks, None))

generate new elements from collected vertex data
for data in vertexList:
 if data[1] != None:
 predList = data[1].split(rowDelimiter)
 for pred in predList:
 if len(pred) > 0:
 index = indexMap[int(pred)] - 1
 if hasHeader:
 index = index - 1
 if index >= 0 and index < len(vertexList):
 if isSuccessor:
 theDoc.connect(data[0], vertexList[index][0])
 else:
 theDoc.connect(vertexList[index][0], data[0])
 if data[2] != None:
 childList = data[2].split(rowDelimiter)
 for child in childList:
 if len(child) > 0:

89

 index = indexMap[int(child)] - 1
 if hasHeader:
 index = index - 1
 if index >= 0 and index < len(vertexList):
 vertexList[index][0].parent = data[0]

return theDoc

Example DOT Exporter

The code below exports a document to a DOT (GraphViz) file, but with
less features then the native export option in Flying Logic.

export_dot.py
a simple DOT format exporter, less complete then the native version in
Flying Logic
Copyright 2013 Sciral

required variable that provided the label for the item in Flying Logic
export menu
exportMenuLabel = "Export Diagram to simple DOT format"

exportDocument: required function for an exporter
parameters
file: filename of the file to export
def exportDocument(file):
 # open output file using Python file I/O
 fh = open(file, 'w')

 fh.write("digraph graphname {\n")
 for elem in document.all:
 if elem.isGroup or elem.isEdge:
 continue

 # use the element unique id’s (eid) to create unique id’s in DOT
 if elem.isEntity:
 fh.write("\tn" + str(elem.eid) + " [label=\"" + elem.title +
"\"];\n")
 if elem.isJunctor:
 fh.write("\tn" + str(elem.eid) + " [label=\"" + elem.operator.
abbreviation + "];\n")
 for outEdge in elem.outEdges:
 fh.write("\tn" + str(elem.eid) + " -> n" + str(outEdge.target.
eid) + ";\n")
 fh.write("\t}\n")

fh.close()

90

91

Flying Logic Document Format
Flying Logic documents are XML-formatted files. The schema for release
3 documents can be downloaded at http://flyinglogic.com/XMLSchema/
flyinglogic-3.xsd. Following are some supporting tables explaining more
about the schema.

92

Reference Tables

The table below gives information about each XML element that can be
found in a Flying Logic document. The elements are listed in the order
they generally appear in a document. The attributes and attribute
elements are common children of many elements, so those elements
and their children are documented at the end of this table.

Because the words “attributes” and “attribute” are used as element
names in a Flying Logic document, those words will be shown in a fixed-
width font when referring to the element names and not as an XML
attribute value.

Element Description
flyingLogic The root element. Attributes are

majorversion (required, “3” for
Flying Logic 2.X), minorversion and
uuid. Can contain domains, symbols,
displaySettings, canvasSettings,
inspectorSettings, printSettings,
documentInfo and decisionGraph
elements. During XSLT export will
also contain an exportDocumentInfo
element.

domains The custom domains defined in the
document. Can contain domain and
alteredBuiltinDomain elements.

domain A custom domain. Contains
entityclass and attributes
elements.

entityclass Either a custom entity class in a
domain or a reference to an entity
class as an entity attribute. For
a custom entity class, contain an
attributes element. For a reference,
has required XML attributes name and
uuid.

93

Element Description
alteredBulltinDomain Appears when a built-in domain

is hidden. Required attributes are
domainName and entityClass
(the guid of one entity class in the
domain). Contains an attributes
element.

symbols The custom symbols defined in
this document. Can contain symbol
elements.

symbol Either a custom symbol or a reference
to a symbol as an entity or group
attribute. Required attributes are
generator and idCode. A custom
symbol definition will contain either
additional elements or text depending
on the format of the custom symbol,
and can have a clip element. Bitmap
image symbols contain a base-64
encoded dump of a PNG file as text.

clip A clip rectangle for a symbol. If
missing, the default is the whole
“image.” Required attributes are x, y,
width and height.

data Appears in an SVG symbol. Contains a
CDATA with the XML text from an SVG
file.

displaySettings The visual elements and layout of the
graph. All the attributes are optional:
addEntityAsSuccessor, annotation-
ToBrowse, bias, confidenceVisible,
edgeNotesVisible, edgeWeightsVis-
ible, entityIdVisible, noteNum-
bersVisible, orientation, and pro-
jectManagementVisible.

canvasSettings The scroll position and zoom level
of the graph. Optional attributes are
horizScroll, vertScroll and zoom.

94

Element Description
chartSettings The column visibility and with settings

for chart view. All the attributes
are optional: classVisible,
classWidth, completionVisible,
effortVisible, finishDateVisible,
resourceVisible, resourceWidth,
startDateVisible, and titleWidth.

inspectorSettings This element has the state of the
sidebar (inspector panel) and contains
inspector elements. The attributes
are visibility and width.

inspector State information about an inspector.
The title attribute matches the
internal name of one inspector. The
optional attributes are visibility
and height. Only the Domain, Text
and User-Defined Attributes inspectors
have a height.

printSettings Saved printing settings for the
document. Optional attributes
are footerLeft, footerMiddle,
footerRight, headerLeft,
headerMiddle, headerRight,
paperMargins, paperName,
paperOrientation, paperSize,
saveInk and showselhalo. (Yes,
showselhalo is all lowercase.)

documentInfo Has attributes for some of the values
settable the Document inspector:
author, comments, keywords and
title.

decisionGraph The actual graph.
Contains entityOperator,
defaultJunctorOperator and
logicGraph elements.

95

Element Description
entityOperator The current entity operator for the

graph. The class attribute is the
name of a vertex operator. See notes
about vertex operators at after this
table.

defaultJunctorOperator The current default junctor operator
for newly created junctors. The class
attribute is the name of a vertex
operator. See notes about vertex
operators at after this table.

calendars The calendars defined in the
document. Can be missing if project
management has never been enabled
for the document. Contains one or
more indexed element elements
that themselves contain a workdays
element. See com.flyinglogic.app.
project.Workweek in table below for
details.

resources The resources defined in the
document. Can be missing if no
resources are defined. Contains one
or more indexed element elements
that themselves contain a resource
element. See com.flyinglogic.app.
project.Resource in table below for
details.

logicGraph The organization of the graph.
Contains a operatorFamily and graph
element.

operatorFamily The key-value family of the graph.
Has one required attribute class
with a required value of com.
flyinglogic.decisiongraph.
DecisionGraphOperatorFamily.

96

Element Description
graph The elements of the graph. Contains

attributes, vertices and edges
elements.

vertices Contains vertex elements
representing entities, junctors and
groups.

vertex An entity, junctor or group. Has a
required attribute of eid, an unique
integer assigned to each graph
element. Entities and junctors have
optional attributes of inEdgeOrder
and outEdgeOrder, which are space-
delimited list of eid values for edges
connected to the element. Groups
have a grouped attribute, a space-
delimited list of eid values for child
vertices, and an optional collapsed
attribute which has a value of true
is the group is collapsed. Contains
an attributes element. During
XSLT export can also contain an
exportAttributes element.

edges Contains edge elements.

edge An edge. Has three required
attributes: eid, an unique integer
assigned to each graph element;
and source and target, the eid
of the connected vertices. During
XSLT export can also contain an
exportAttributes element.

attributes Contains attribute elements.

attribute An attribute is a key-value pair with
an associated data type for the value.
There are two required attributes, key
and class. Each known class has its
own format for its contents. See the
table of recognized classes below.

97

Element Description
extendedDocumentInfo This element only appears during

XSLT export. Has attributes title
(the document file name as a title),
screenWidth and screenHeight
(visible dimensions of graph) and
hoistKey (eid of hoisted group if
graph hoisted).

exportAttributes This element only appears
during XSLT export if the flags
XSLT_INCLUDE_FRAMES or XSLT_
INCLUDE_EDGE_SPLINES are set in
the exportDocument call. Contains
exportAttribute elements.

exportAttribute A key-value pair with a key attribute
and value of either text content or
child elements. If XSLT_INCLUDE_
FRAMES flag is set and a graph
element is visible. it will have
exportAttribute elements with
values for x, y, width and height.
If XSLT_INCLUDE_EDGE_SPLINES
is set, a visible edge will have an
exportAttribute with a key of “path”
and contains a bezierList element.

bezierList Has attributes of head and tail that
indicate what the edge is connected to:
source, target, annotation, weight,
entityhoistcap or junctorhoist-
cap. Contains one or more bezier ele-
ments.

bezier Has attributes giving the control points
x1, y1, x2, y2, x3, y3, x4 and y4.

98

The contents of an attribute element varies by the value of the class
attribute. The first table below lists all the know keys, the class for that
key and the allowed parent element of the attributes element it ap-
pears within. The second table describes the contents for each recog-
nized class. Operators have more details after these two tables.

Value of key Value of class Parent elements
(notes)

user.identifier java.lang.String
java.lang.Integer
java.lang.Double
java.lang.Boolean

graph
vertex
edge
(user defined
attribute where
identifier is the
string appearing
in the UI or key to
use with the user
array in scripts)

title java.lang.String vertex (entity and
group only)

confidence com.arciem.
FuzzyBoolean

edge
vertex (entity
only)

type java.lang.String vertex (either
“entity” or “junc-
tor”)

typeid java.lang.Integer vertex (entity
only)

completion java.lang.Double vertex (entity
only)

effortTime com.flyinglogic.
app.project.
FLTimeInterval

vertex (entity
only)

99

Value of key Value of class Parent elements
(notes)

effort java.lang.Double entityClass
vertex (entity
only) (1.0 equals
one day) dep-
recated. Do not
use in 3.0 or later
documents.

startDate com.flyinglogic.app.
project.FLDate

vertex (entity
only)

endDate com.flyinglogic.app.
project.FLDate

vertex (entity
only)

projectStartDate com.flyinglogic.app.
project.FLDate

graph (calculated
with finish-to-start
scheduling)

projectEndDate com.flyinglogic.app.
project.FLDate

graph (calculated
with start-to-finish
scheduling)

resAssignment java.lang.String vertex (entity
only)

startTime com.flyinglogic.
app.project.
FLTimeInterval

vertex (entity
only, always calcu-
lated for now)

endTime com.flyinglogic.
app.project.
FLTimeInterval

vertex (entity
only, always calcu-
lated for now)

utilization java.lang.Double vertex (entity
only, informational
only)

noteHTML com.arciem.
CDATAElement

edge
vertex
(styled annotation
as XHTML text)

100

Value of key Value of class Parent elements
(notes)

note java.lang.String edge
vertex
(unformatted ver-
sion of noteHTML)

noteNumber java.lang.Integer edge
vertex

entityClass com.flyinglogic.
logicgraph.
entityclass.
EntityClass

vertex (entity
only)

symbol com.arciem.symbol.
Symbol

entityClass
vertex (entity
and group only)

weight java.lang.Double edge

backEdge java.lang.Boolean edge

forwardOperator operator

(for edge always

com.flyinglogic.
logicgraph.operator.
MultiplyEdgeOperator)

edge
vertex (entity
and junctor only)

color com.arciem.graphics.
ColorRGB

entityClass
vertex (group
only)

name java.lang.String domain
entityClass

uuid java.util.UUID entityClass

builtin java.lang.Boolean domain
entityClass

hidden java.lang.Boolean domain
entityClass

edgeWeight java.lang.Double entityClass

showname java.lang.Boolean entityClass

101

Value of class Description of attribute con-
tents

java.lang.String Text is a string.

java.lang.Integer Text is an integer.

java.lang.Double Text is a real.

java.lang.Boolean Text is either true or false.

java.util.UUID Text is a text-encoded globally
unique identifier (GUID).

com.arciem.CDATAElement A CDATA node containing XML or
XHTML.

com.arciem.FuzzyBoolean A fuzzyBoolean element with a
required attribute of true with a
real value normally between 0.0
and 1.0.

com.flyinglogic.app.project.
FLDate

A date element with a required
attribute value of a ISO-8601
date and time in UTC. The time
should always be 00:00:00 in this
version of Flying Logic.

com.arciem.symbol.Symbol A symbol element (see above).
Can have just an idCode of
“none”, indicating the default
symbol for an entity class is be-
ing hidden.

com.flyinglogic.logicgraph.
entityclass.EntityClass

An entityClass element (see
above).

com.arciem.graphics.ColorRGB A colorRGB element with three
attributes red, green and blue
as real values between 0.0 and
1.0.

102

Value of class Description of attribute con-
tents

com.flyinglogic.app.project.
Workweek

A workdays element. Has three
required attributes of rid (re-
source ID), days (a comma-
delimited days of the week as
lower-case three-letter abbrevia-
tions) and hours (must be 1.0 to
23.0). Can contain event ele-
ments that act as exceptions to
the work schedule.

com.flyinglogic.app.project.
Resource

a resource element. Has three re-
quired attributes: rid (resource
ID), name, and cid (calendar ID).
Can contain abbr (abbreviation,
can be empty) and utilization
(value between 0.0 and 1.0, but
not 0.0) attributes.

com.flyinglogic.app.project.
FLTimeInterval

an interval element. Contains
an ISO-8601 time value; e.g.,
PT8H0M0S represents a time in-
terval of 8 hours

Each kind of vertex and edge operator has a unique contained element
that has no attributes or contents. The table below lists the single ele-
ment contained in each operator by class.

Operator class Contained element
com.flyinglogic.logicgraph.operator.
FuzzyOrVertexOperator

fuzzyOr

com.flyinglogic.logicgraph.operator.
FuzzyAndOperator

fuzzyAnd

com.flyinglogic.logicgraph.operator.
FuzzyXorVertexOperator

fuzzyXor

com.flyinglogic.logicgraph.operator.
AverageVertexOperator

average

com.flyinglogic.logicgraph.operator.
ComplementVertexOperator

comp

103

Operator class Contained element
com.flyinglogic.logicgraph.operator.
DistributorVertexOperator

dist

com.flyinglogic.logicgraph.operator.
MaxVertexOperator

max

com.flyinglogic.logicgraph.operator.
MinVertexOperator

min

com.flyinglogic.logicgraph.operator.
MultiplyVertexOperator

multiply

com.flyinglogic.logicgraph.operator.
NegateVertexOperator

neg

com.flyinglogic.logicgraph.operator.
ProductVertexOperator

product

com.flyinglogic.logicgraph.operator.
ProportionVertexOperator

proportion

com.flyinglogic.logicgraph.operator.
ReciprocalVertexOperator

reciprocal

com.flyinglogic.logicgraph.operator.
SumVertexOperator

sum

com.flyinglogic.logicgraph.operator.
SumProbabilitiesVertexOperator

sump

com.flyinglogic.logicgraph.operator.
MultiplyEdgeOperator

multiply

104

